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Anisotropic capillary interactions and jamming of colloidal particles trapped
at a liquid-fluid interface

J.-B. Fournier*
Laboratoire de Physico-Chimie The´orique, ESPCI, 10 rue Vauquelin, F-75231 Paris cedex 05, France

P. Galatola†

LBHP, Universite´ Paris 7 Denis Diderot, Case 7056, 2 place Jussieu, F-75251 Paris cedex 05, France
~Received 18 July 2001; published 8 February 2002!

We determine the capillary attraction and equilibrium configurations of particles trapped at a liquid-fluid
interface due to the pinning of their contact line. We calculate analytically the asymptotic interaction energy
between two particles and, numerically, the multibody energy landscape for up to four contacting particles. Our
results are consistent with recent experiments. We show that a system composed of a large number of such
particles behaves as a jammed system.
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Capillary interactions arise whenever particles that
floating between a liquid and a fluid distort the interfac
These interactions originate from the dependence of the
ergy stored in the interface on the distance between the
ticles. More generally, interactions mediated by the elasti
of the medium in which particles are embedded occur
e.g., phase-separating binary mixtures@1#, critical fluids @2#,
bilayer membranes@3,4#, and liquid crystals@5,6#. Capillary
interactions play significant roles in several important te
nologies@7#, including ore flotation@8#, foam stabilization
@9#, and solid surface nanostructuring by deposition of tw
dimensional colloidal crystal or aggregates@10–12#.

The interaction between floating objects is well und
stood only when the contact lines can freely adjust th
shape at the surfaces of particles: the weight of the parti
induces an interfacial distortion that relaxes by capillar
thereby mediating the interaction. However, exact numer
results are only available for the simplest case of two para
cylinders @13#. Various approximations, e.g., Nicolson’s s
perposition approximation@14#, have been devised fo
spheres and cylinders@15–17#.

Recently, strong capillary aggregations of floating coll
dal spheres have been reported in a regime where the a
gravity-induced interaction is negligible, due to the sma
ness of the particles@18#. This effect has been attributed to
pinning of the contact line at the surfaces of particles. T
corresponding long-range interfacial distortion has a quad
polar shape, which mediates a very strong interaction in u
of kBT. Similar behaviors were recently observed in expe
ments involving photolithography-fabricated curved dis
having one hydrophobic and one hydrophilic side. It is th
the edge of the curved disc that effectively pins the con
line @19#.

In this paper, we model both experiments in a unified w
and we produce exact results for the interaction betw
such ‘‘trapped’’ particles. We obtain the asymptotic intera
tion analytically without using uncontrolled superpositio
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approximations. We then compute numerically the exact
teraction between two particles, and themany-bodyinterac-
tion between three and four particles, in order to underst
collective behaviors. We finally attempt to connect our
sults with thejammed-fluidizedtransition for attractive par-
ticles under external stress@20,21#, thereby proposing thes
systems as models for microrheological studies.

For definiteness, we consider floating particles that pos
a fixed, nonplanar line thatpins the fluid’s interface~as in the
above examples@18,19#!. When such particles interact, the
contact lines rise, tilt, and rotate rigidly with the particle
however, each line remains fixed in the local frame attac
to its particle. For simplicity, and in agreement with Re
@19#, we assume that the contact lines depart weakly from
circle, thus excluding elongated particles. We also assu
weak distortions of the interface heighth(x,y) relative to the
plane (x,y). This implies that the projection of each conta
line onto this plane can be approximated by a circle, ev
when the particle is tilted. We describe thei th particle’s con-
tact line by the height functionz i(f i) ~see Fig. 1!, that we
expand in Fourier harmonics:z i(f i)5C0i1(n@Cnicos(nfi)
1Snisin(nfi)#. Due to the fixed shape of the contact line
the particle’s frame, some of the above coefficients are c
strained while others are free.C0i , which describes how the
particle rises, is free~Fig. 1!. The dipolar coefficientsC1i
andS1i , which parametrize the tilts of the contact line rel
tive to thez axis, are also free. The lowest-order multipo
bearing the information concerning the shape of the con
line is, therefore, thequadrupole@18#. We assume explicitly

z i~f i !5C0i1C1icosf i1S1isinf i1H2icos@2~f i2b i !#

1H4icos@4~f i2b i !#. ~1!

The quadrupolar coefficientH2i is a constant, associated
with the shape of the contact line, andb i is the free variable
that represents therotation of the particle about its normaln
~Fig. 1!. For the sake of completeness we have added
lowest-order multipole that does not break mirror symme
H4icos@4(fi2bi)#. The octupolar coefficientH4i is a con-
stant that describes how the contact lines departs from
©2002 The American Physical Society01-1
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purely quadrupolar shape. The two points where the he
modulation of the contact line relative to its average plan
the largest define anaxis, evidenced by the dashed line in th
figures. For small deformations, the excess free energy a
ciated with the surface tensiong of the interface is given by

F5
g

2E d2r ~“h!2, ~2!

where r5(x,y). For micron-sized particles as we consid
here, gravity is negligible@18#. At equilibrium, the first
variation ofF vanishes, which yields~see Fig. 1!

E d2r ~¹2h!dh1(
i

R
Di

dsi

]h

]r i
dz i50, ~3!

wheredsi5aidf i . Thus¹2h50. For fixed projected posi
tions and rotationsb i of the particles,dz i reduces todC0i
1dC1icosfi1dS1isinfi , since theb i ’s and the coefficients
H2i and H4i in Eq. ~1! are constant. Hence the bounda
equilibrium ~freedom of the particles to rise and tilt! is ex-
pressed by the vanishing of the zeroth and first-order Fou
harmonics of]h/]r i on Di , which implies that the expan
sion of ]h/]r i starts atn52,

]h

]r i
~r i5ai ,f i !5 (

n52

`

cnicos~nf i !1snisin~nf i !. ~4!

The condition¹2h50 implies the integral equation

h~r 8!5(
i

R
Di

F]h~r !

]r i
G~r ,r 8!2h~r !

]G~r ,r 8!

]r i
Gdsi ,

~5!

FIG. 1. Representation of the contact line of thei th particle and
of its projection onto the reference plane.
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known as the second Green identity@22#, where G(r ,r 8)
5 lnur2r 8u/2p is ¹2’s Green function. Evaluating Eq.~5! for
r 8 on theDi ’s with the Fourier series~1! and ~4!, and with
the multipolar expansion:

G~r ,r 8!5
1

2p F ln r 82 (
n51

`
r n

nr8n
cos@n~f2f8!#G , ~6!

we obtain a linear set of equations for the unknown variab
C0i ,C1i ,S1i , andcni ,sni for n>2. Givenb i ,H2i , andH4i ,
these variables determine completely bothh and ]h/]r i on
the Di ’s. Finally, Eq. ~5! determinesh(r ) everywhere. The
corresponding free energy is obtained by integrating Eq.~2!
by parts and using¹2h50

F5
g

2E d2r“•~h“h!

52
g

2 (
i

aiE
0

2p

df iz i

]h

]r i

52
pg

2 (
i ;k52,4

ai@Hki$ckicos~kb i !1skisin~kb i !%#.

~7!

Two particles.Consider two particles (i 5l ,r ) separated
by a distanced ~Fig. 2!. Solving analytically the linear sys
tem determining the unknown profile coefficients ford→`
yieldsF(d)5F01F4(d)1O(d26), where the leading-orde
interaction is

F45212pg
al

2ar
2

d4
H2l H2rcos@2~b l 1b r !#. ~8!

It coincides with the result found in Ref.@18# from a super-
position approximation in the spirit of Nicolson@14#. Note
that it doesnot depend on theH4i ’s. At fixed d, the particles
interaction is minimized when the axes of the particles
symmetrically rotated with respect to the line joining the

FIG. 2. Universal relative error between the exact forcef and the
asymptotic forcef ` for two identical, purely quadrupolar particle
(H4i50) of sizeai5a, as a function of their reduced separatio
Inset: calculated interface profile forb i ’s equal to zero.
1-2
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ANISOTROPIC CAPILLARY INTERACTIONS AND . . . PHYSICAL REVIEW E65 031601
(b l 52b r), as if the particles were geared. Then, the force
acting between them is attractive, and is asymptotica
given by

f `~d!5248pg
al

2ar
2H2l H2r

d5
. ~9!

The exact interaction energyDF(d,b l ,b r) can be obtained
for any distance by solving numerically the set of equatio
for the profile coefficients after truncating the Fourier expa
sions at a large but finite order, and checking for conv
gence.f ` turns to be a very good approximation for a wid
range of separations, as evidenced in Fig. 2, for two ident
particles withH4i50. The corresponding force at contact
however,.65% weaker thanf ` . The associated interactio
energy is22.0gH2

2 ,.20% weaker than the approximatio
given by F4. For g.70 erg/cm2 ~water!, a.1 mm, and
H2 /a.0.1, this gives.21.431028erg (.233105kBT).
Note that the contact force actually depends on the detai
the higher Fourier components. When theH4i ’s are zero
~purely quadrupolar particles!, the numerically determined
interaction turns out to be proportional to cos@2(bl 1b r)# at
any separation: the energy minimum isdegenerate, corre-
sponding tob l 52b r . Physically, this ‘‘gearing’’ condition
is favored because it allows the heightsz i of the contact lines
of particles to match, thereby preventing a strong local in
facial distortion@19#. Our exact calculations further showe
that the presence of nonzero octupolar correctionsH4i actu-
ally lifts this degeneracy: the minimum energy is attain
whenb l 5b r50 ~axes of particles parallel to the separati
vector!, as intuited in Ref.@19#. Indeed, it is best to match
the heights where the contact lines have a sharper distor
i.e., at the tips of the axes.

Three particles.Owing to the strength of the above attra
tion (.105kBT), we study the equilibrium states of thre
particles by assuming:~i! that each particle contacts at lea
another particle,~ii ! that the particles can rotate around ea
other, in agreement with the experiments of Ref.@19#. We
consider generic particles, i.e.,H4iÞ0. Without loss of gen-
erality, we fix two particles at contact, and we explore t
energy landscape as a function of the position of the th
particle, described by the anglec ~Fig. 3!. For eachc we
minimize the energy with respect to the rotationsb i of the
three particles.

We obtain two distinct branches exhibiting three me
stable minima~see Fig. 3!. The latter almost perfectly satisf
the above-mentioned ‘‘gearing’’ rule. Thecurved-line con-
figuration A suggests athree-body effect, since the axes o
the particles are not parallel to one another, contrary to
pairwise case. Indeed, repeating the calculation with pairw
interactions instead of the exact many-body interact
yields a straight line. The most stable, packed configura
is the triangleC with a radial orientation of the particles. On
might argue that it best relaxes the strong interfacial dis
tion located at the facing tips of the axes of particles. T
orthoradial triangleB is also very stable.

Four particles.To determine the equilibrium states of fou
contacting particles, we explore the energy landscape by
03160
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ing the positions of three particles through the anglec r , and
minimizing with respect to both the positionc l of the fourth
one and all the rotation anglesb i ~see Fig. 4!. We obtain
three branches and six equilibrium states.

As a new indication of a many-body effect, the ‘‘gearing
rule is strongly violated in configurationD and slightly vio-
lated inC. Contrary to the three-particle case, theorthoradial
squareB is more stable than the radial squareE. One might
suspect that since the gap between the particles is larger
in the triangular case, it is more important to relax the d
tortion stored at the tips of the axes on the sides of the sq
rather than in its center. Note, however, that such reason
become more and more delicate as the number of parti
increases. The fact thatB andE are the most stable configu
rations suggests, as proposed in Ref.@19#, that the ground
state for many particles should be a square lattice withB, or
equivalentlyE, as unit cell. We find again the curved-lineA
and different triangular arrangements with a fourth attach
particle (C,D,F). Our results do successfully reproduce t
various structures that can be locally seen in the experim
tal pictures of Ref.@19#.

Such floating particles can be considered as a model
tem to studyjamming phenomena in complex fluids. Jam

FIG. 3. Normalized interaction energyDF/gH2
2 for three iden-

tical particles withH450.25H2 as a function of the configuration
anglec. The two branches come from the minimization with r
spect to the anglesb i . The barrier associated with the minimumA
is .3.63104kBT for H250.1 mm.

FIG. 4. Normalized interaction energyDF/gH2
2 for four identi-

cal particles withH450.4H2 as a function of the anglec r specify-
ing the position of the rightmost particle.
1-3
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J.-B. FOURNIER AND P. GALATOLA PHYSICAL REVIEW E65 031601
ming occurs in the presence of either repulsive or attrac
forces@21#, when a disordered system gets trapped in ph
space, for kinetic or energetical reasons, and thus exhib
yield stress @20#. Aggregates of a large number of th
‘‘trapped’’ particles discussed in this paper should form
accretion of individual particles or small clusters. In the a
sence of irreversible sticking, at each accretion the parti

FIG. 5. Tentative jamming phase diagram extrapolated from
results for four particles. The dashed line is the power lawsy
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will rearrange until they fall in one of the many metastab
configurations. They will thereby form a disordered structu
with a yield stress. Such colloidal aggregates are, theref
more akin to a foam@23# than to a collection of sticky
spheres@24#.

To test the relevance of this description in terms of ja
ming, we estimate the dependence of the yield stresssy on
the volume fractionf, from the energetical landscape fo
four particles~Fig. 4!. For each metastable state, we setf
}1/L2, whereL is the distance between the farthest particl
and we estimatesy.Eb /aL, whereEb is the energy barrier
towards the nearest minimum, and.Eb /a the force required
to rearrange a given state. This yields the diagram of Fig
which is quite reminiscent of the phase diagram for attract
athermal systems proposed in Ref.@21#, with a characteristic
power lawsy;fm.

It should thus be very interesting to experimentally stu
the microrheological behavior of such particles’ aggrega
Indeed, direct observations would be possible because
system is two dimensional; furthermore, as we have sho
this is one of the few systems where exact many-body
culations are possible.
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